ORTOGONAIS GRACELI.
FUNÇÕES ORTOGONAIS COM O SISTEMA PROGRESSIMAL INFINITESIMAL DE GRACELI.
INTEGRAIS, SOMAS E SÉRIES DE GRACELI.
séries e integrais de Graceli.
Esta lista de séries matemáticas contém fórmulas para somas finitas e infinitas. Ela pode ser usada em conjunto com outras ferramentas para avaliar somas.
-S / PW
pg
Gn [px] = an cos[-1/

]f[Gn]=

+bn sen 1/
Gn [k[pr]

ph] =
T [t] = ao / pk +

[an . cos [nst pk] / L + bn . SEN [nst] / L pk =
SÉRIES DE FURIER COM ELEMENTOS DA MATEMÁTICA DE GRACELI.
{\displaystyle T(t)={\frac {a_{0}}{2}}+\sum _{n=1}^{\infty }\left[a_{n}\cdot \cos \left({\frac {n\pi t}{L}}\right)+b_{n}\cdot \operatorname {sen} \left({\frac {n\pi t}{L}}\right)\right]}
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
,
e, 
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
. Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
.Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
.Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
.Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
:
.Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
{\displaystyle T(t)={\frac {a_{0}}{2}}+\sum _{n=1}^{\infty }\left[a_{n}\cdot \cos \left({\frac {n\pi t}{L}}\right)+b_{n}\cdot \operatorname {sen} \left({\frac {n\pi t}{L}}\right)\right]}
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
]
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
,
para
,
e 
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
e
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
e
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
e
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
:
, tal que
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
para
.Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
,
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] = para 
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Gn [px] = an cos[-1/
]f[Gn]=
+bn sen 1/ Gn [k[pr]
ph] =
Comentários
Postar um comentário